巜疯狂的少妇4做爰,国产精品成人国产乱,中文字幕在线观看亚洲日韩,亚洲精品成AV人片天堂无码,青青青在线视频国产,国产日韩成人内射视频,日出水了特别黄的视频,年轻的妺妺伦理HD中文,被部长玩的漂亮人妻,又硬又粗进去爽A片免费

航空翻譯_飛行翻譯_民航翻譯_藍天飛行翻譯公司

當前位置: 主頁 > 直升機 > 直升機資料 >

直升機飛行手冊 Helicopter Flying Handbook

時間:2014-11-09 12:30來源:FAA 作者:直升機翻譯 點擊:

To view this page ensure that Adobe Flash Player version 9.0.124 or greater is installed.


Pressure Altitude. 8,000 feet
Outside Air Temperature +15 °C
A. Indicated Airspeed80 knots
B. Maximum Gross Weight5,000 lb
With this chart, first confirm that it is for a pressure altitude of 8,000 feet with an OAT of 15°. Begin on the left side at 80 knots indicated airspeed (point A) and move right to maximum gross weight of 5,000 lb (point B). From that point, proceed down to the torque reading for level flight, which is 74 percent torque (point C). This torque setting is used in the next problem to add or subtract cruise/descent torque percentage from cruise flight.
Sample Climb Problem
Determine climb/descent torque percentage using Figure 7-5. Use the following conditions:
A. Rate of Climb or Descent 500 fpm
B. Maximum Gross Weight .5,000lb
With this chart, first locate a 500 fpm rate of climb or descent (point A), and then move to the right to a maximum gross weight of 5,000 lb (point B). From that point, proceed down to the torque percentage, which is 15 percent torque (point C). For climb or descent, 15 percent torque should be added/ subtracted from the 74 percent torque needed for level flight. For example, if the numbers were to be used for a climb torque, the pilot would adjust torque settings to 89 percent for optimal climb performance.
1,500
Rate.of.climb.or.descent.(feet.per.minute)
1,400 1,300 1,200 1,100 1,000 900 800 700 600 500 400 300 200 100 0
30003500
4000450 5000 0
5500
GROSS.WEIGHT.-.(LB)
A  B
 C
0.5.10.15.20.25.30.35.40 Torque.(%)
Chapter Summary
This chapter discussed the factors affecting performance: density altitude, weight, and wind. Five sample problems
Figure 7-4. Maximum rate-of-climb chart.  were also given with performance charts to calculate
different flight conditions and determine the performance
of the helicopter.
7-6
Preflight
Before any flight, ensure the helicopter is airworthy by inspecting it according to the rotorcraft flight manual (RFM), pilot’s operating handbook (POH), or other information supplied either by the operator or the manufacturer. Remember that it is the responsibility of the pilot in command (PIC) to ensure the aircraft is in an airworthy condition.
In preparation for flight, the use of a checklist is important so that no item is overlooked. [Figure 8-1] Follow the manufacturer’s suggested outline for both the inside and outside inspection. This ensures that all the items the manufacturer feels are important are checked. If supplemental equipment has been added to the helicopter, these procedures should be included on the checklist as well.
Minimum Equipment Lists (MELs) and Operations with Inoperative Equipment
Title 14 of the Code of Federal Regulations (14 CFR) requires that all aircraft instruments and installed equipment be operative prior to each departure. However, when the Federal Aviation Administration (FAA) adopted the minimum equipment list (MEL) concept for 14 CFR part 91 operations, flights were allowed with inoperative items, as long as the inoperative items were determined to be nonessential for safe flight. At the same time, it allowed part 91 operators, without an MEL, to defer repairs on nonessential equipment within the guidelines of part 91.
There are two primary methods of deferring maintenance on rotorcraft operating under part 91. They are the deferral provision of 14 CFR part 91, section 91.213(d) and an FAA-approved MEL.
The deferral provision of 14 CFR section 91.213(d) is widely used by most pilot/operators. Its popularity is due to simplicity and minimal paperwork. When inoperative equipment is found during preflight or prior to departure, the decision should be to cancel the flight, obtain maintenance prior to flight, determine if the flight can be made under the limitations imposed by the defective equipment, or to defer the item or equipment.
Maintenance deferrals are not used for in-flight discrepancies. The manufacturer’s RFM/POH procedures are to be used in those situations. The discussion that follows is an example of a pilot who wishes to defer maintenance that would ordinarily be required prior to flight.
直升機翻譯 www.muluu.cn
本文鏈接地址:直升機飛行手冊 Helicopter Flying Handbook