巜疯狂的少妇4做爰,国产精品成人国产乱,中文字幕在线观看亚洲日韩,亚洲精品成AV人片天堂无码,青青青在线视频国产,国产日韩成人内射视频,日出水了特别黄的视频,年轻的妺妺伦理HD中文,被部长玩的漂亮人妻,又硬又粗进去爽A片免费

航空翻譯_飛行翻譯_民航翻譯_藍天飛行翻譯公司

當前位置: 主頁 > 直升機 > 直升機資料 >

旋翼機飛行手冊 ROTORCRAFT FLYING HANDBOOK

時間:2011-04-05 11:32來源:藍天飛行翻譯 作者:航空 點擊:

To view this page ensure that Adobe Flash Player version 9.0.124 or greater is installed.


Advantages of this system include vibration isolation, simple maintenance, and the ability to start and warm up the engine without engaging the rotor.
FREEWHEELING UNIT
Since lift in a helicopter is provided by rotating airfoils, these airfoils must be free to rotate if the engine fails. The freewheeling unit automatically disengages the engine from the main rotor when engine r.p.m. is less than main rotor r.p.m. This allows the main rotor to continue turning at normal in-flight speeds. The most common freewheeling unit assembly consists of a one-way sprag clutch located between the engine and main rotor transmission. This is usually in the upper pulley in a piston helicopter or mounted on the engine gearbox in a turbine helicopter. When the engine is driving the rotor, inclined surfaces in the spray clutch force rollers against an outer drum. This prevents the engine from exceeding transmission r.p.m. If the engine fails, the rollers move inward, allowing the outer drum to exceed the speed of the inner portion. The transmission can then exceed the speed of the engine. In this condition, engine speed is less than that of the drive system, and the helicopter is in an autorotative state.
MAIN ROTOR SYSTEM
Main rotor systems are classified according to how the main rotor blades move relative to the main rotor hub. As was described in Chapter 1—Introduction to the Helicopter, there are three basic classifications: fully articulated, semirigid, or rigid. Some modern rotor systems use a combination of these types.
FULLY ARTICULATED ROTOR SYSTEM
In a fully articulated rotor system, each rotor blade is attached to the rotor hub through a series of hinges, which allow the blade to move independently of the others. These rotor systems usually have three or more blades. [Figure 5-5]
 

The horizontal hinge, called the flapping hinge, allows the blade to move up and down. This movement is called flapping and is designed to compensate for dissymetry of lift. The flapping hinge may be located at varying distances from the rotor hub, and there may be more than one hinge.
The vertical hinge, called the lead-lag or drag hinge, allows the blade to move back and forth. This movement is called lead-lag, dragging, or hunting. Dampers are usually used to prevent excess back and forth movement around the drag hinge. The purpose of the drag hinge and dampers is to compensate for the acceleration and deceleration caused by Coriolis Effect.
Each blade can also be feathered, that is, rotated around its spanwise axis. Feathering the blade means changing the pitch angle of the blade. By changing the pitch angle of the blades you can control the thrust and direction of the main rotor disc. 
 

SEMIRIGID ROTOR SYSTEM
A semirigid rotor system is usually composed of two blades which are rigidly mounted to the main rotor hub. The main rotor hub is free to tilt with respect to the main rotor shaft on what is known as a teetering hinge. This allows the blades to flap together as a unit. As one blade flaps up, the other flaps down. Since there is no vertical drag hinge, lead-lag forces are absorbed through blade bending. [Figure 5-6]

直升機翻譯 www.muluu.cn
本文鏈接地址:旋翼機飛行手冊 ROTORCRAFT FLYING HANDBOOK